Home / Docs-Technical WhitePaper / 35-EFT.WP.EDX.OrientedTension v1.0
Chapter 4 Axioms & Minimal Equations of Oriented Tension (P/S)
I. Abstract & Scope
This chapter establishes the axiom system and the minimal set of equations for oriented tension. With the orientation energy density W_orient as the core, and under symmetry, zero-baseline & positive-definiteness, and frame-objectivity, we derive the minimal constitutive form mapping W_orient to the oriented tension tensor T_fil_ij, together with the minimal dynamical closure for the order tensor. All symbols use English notation in backticks; SI units apply. No ToA terms appear here.
II. Dependencies & References
- Orientation geometry & distributions: Chapter 3 S80-1/2 (f_orient normalization; Q_ij definition).
- Symbols & dimensions: Chapter 2 (P80-1/4/5/6).
- Metrology & inversion: Chapter 5 (M80-1…4).
- Coupling & transport: Chapter 6 (S80-5/6).
- Energy accounting & power partition: Chapter 7 (S80-7/8).
III. Normative Anchors (added in this chapter, P80-/S80-)
- P80-2 (Orientation-Symmetry Axiom): apolar materials remain invariant under n_hat → -n_hat; polarity must be modeled explicitly in polar materials.
- P80-3 (EDX-Accounting Axiom): orientation energy and power terms close within a control volume; W_orient participates in the conservation and dissipation split of Chapter 7.
- P80-9 (Zero-Baseline & Positivity Axiom): in the isotropic base state Q_ij=0, W_orient=0, and for admissible perturbations W_orient ≥ 0.
- P80-10 (Frame-Objectivity Axiom): W_orient and the derived T_fil_ij are objective (invariant) under rigid-body rotations.
- S80-3 (Energy-Based Constitutive Form of Oriented Tension):
T_fil_ij = ( ∂W_orient / ∂(∂_i u_j) ) + T^{(Q)}_{ij},
where T^{(Q)}_{ij} collects the non-elastic/orientation-mapped part via Q_ij (detailed in the text). - S80-4 (Minimal Dynamics of the Order Tensor):
∂_t Q_ij + u_k ∂_k Q_ij − Ω_{ik} Q_{kj} − Q_{ik} Ω_{kj} = − ( Q_ij − Q_ij^eq ) / tau_relax + D_Q ∇^2 Q_ij + S_ij,
with Ω_{ij} = ( ∂_i u_j − ∂_j u_i ) / 2. S_ij is an orientation source (e.g., field-induced alignment), and Q_ij^eq is the local equilibrium order.
IV. Body Structure
I. Background & Problem Statement
- From an energetic perspective, oriented tension is obtained from variations of W_orient(Q_ij, ∇Q_ij, …), and coexists with elastic contributions depending on the deformation gradient.
- The minimal equations must satisfy: symmetry (P80-2), energy-closure (P80-3), zero-baseline and positivity (P80-9), and objectivity (P80-10); and provide identifiable parametrizations for Chapter 5 metrology and Chapters 6–7 coupling/energy equations.
II. Key Equations & Derivations (S-series)
- S80-3 (W_orient → T_fil_ij)
- Elastic-like contribution (if W_orient contains ∂_i u_j):
T^{(el)}_{ij} = ∂W_orient / ∂(∂_i u_j) (unit Pa). - Orientation-mapped contribution (minimal linear closure):
T^{(Q)}_{ij} = Λ_{ijkl} Q_{kl},
where Λ_{ijkl} satisfies material symmetries and objectivity (unit Pa). Nonlinear closures may be written as T^{(Q)}_{ij} = ∑_m c_m 𝓘^{(m)}_{ij}(Q) with invariant-based tensor bases 𝓘^{(m)}. - Total oriented tension: T_fil_ij = T^{(el)}_{ij} + T^{(Q)}_{ij}.
- Elastic-like contribution (if W_orient contains ∂_i u_j):
- S80-4 (Dynamics of Q_ij)
- Advection & rotation: ∂_t Q_ij + u_k ∂_k Q_ij − Ω_{ik} Q_{kj} − Q_{ik} Ω_{kj}.
- Relaxation & diffusion: − ( Q_ij − Q_ij^eq ) / tau_relax + D_Q ∇^2 Q_ij.
- Sources: S_ij built from invariants or external fields (E_vec, B_vec, u_vec), preserving symmetry and tracelessness.
- Energetic compatibility: the quadratic approximation W_orient ≈ (1/2) A Q_ij Q_ij + (1/2) K ∂_k Q_ij ∂_k Q_ij (A≥0, K≥0) is consistent with the positivity of tau_relax and D_Q.
III. Methods & Flows (M-series)
- M80-16 (Axiom-Consistency Audit): input candidate W_orient and Λ_{ijkl}, automatically check P80-2/3/9/10 and dimensions; output a consistency report and a minimal counterexample set.
- M80-17 (Zero-Field Linearization & Identifiability): linearize S80-3/4 near Q_ij≈0; derive identifiability conditions and experiment-design matrices for Λ_{ijkl}, A, K, tau_relax, D_Q.
- M80-18 (Constitutive Parameter Estimation): with Chapter 5 metrology, minimize L = L_T + L_Q + L_reg to fit {Λ_{ijkl}, A, K, tau_relax, D_Q}; output {posterior, evidence} with uncertainties.
IV. Cross-References within/beyond this Volume
- Chapter 3: geometric–statistical inputs S80-1/2 (Q_ij, f_orient).
- Chapter 5: metrology/inversion pipelines for Q_ij and T_fil_ij (M80-1…4).
- Chapter 6: coupling terms and transport coefficients use T_fil_ij and Q_ij from this chapter (S80-5/6).
- Chapter 7: inclusion of W_orient and power terms in energy accounting (S80-7/8).
V. Validation, Criteria & Counterexamples
- Positive criteria:
- W_orient(Q_ij, ∇Q_ij) satisfies zero-baseline & positivity; objectivity passes.
- T_fil_ij from S80-3 matches measured tension in units/dimensions and symmetry.
- S80-4 is stable in linear regimes and identifiable on experimental timescales (posterior convergence and improved evidence).
- Negative criteria:
- W_orient yields negative energy or violates n_hat → -n_hat invariance.
- Λ_{ijkl} breaks material symmetry or objectivity.
- Removing orientation terms (e.g., Λ_{ijkl}→0 or A→0) does not degrade fit quality (mechanism falsified).
- Contrasts:
- Evidence comparisons among {elastic-only, orientation-only, elastic+orientation}.
- {isotropic Λ, anisotropic Λ} discrimination via T_fil_ij patterns.
- {with K, without K} impacts on interfacial/gradient-sensitive observables.
VI. Deliverables & Figure List
- Deliverables:
- ConstitutiveCard.json (W_orient structure, Λ_{ijkl}, A,K,tau_relax,D_Q with units/dimensions).
- Identifiability.md (linearization and design matrices).
- EvidenceReport.md (positive/negative criteria, evidence ratios, counterexample summary).
- Figures/Tables (suggested):
- Tab. 4-1 Minimal parametrizations of W_orient with units.
- Tab. 4-2 Symmetries and independent counts of Λ_{ijkl}.
- Fig. 4-1 Stability spectrum and parameter sensitivities of S80-4.
- Tab. 4-3 Evidence & error comparisons for {elastic-only, orientation-only, combined}.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/