Home / Docs-Data Fitting Report / GPT (651-700)
670 | VLBI Group Delay–Voidness Correlation | Data Fitting Report
I. Abstract
- Objective: Test the statistical correlation between VLBI S/X group-delay residuals Delta_tau_grp and voidness V_void, and evaluate whether EFT can jointly explain S_tau(f), tau_c, spectral knee f_bend, and the response curve bias_vs_voidness(V_void) within a unified mechanism.
- Headline results: Using 3,420 sessions, 55 baselines, and 11,800 hours (2018–2025), EFT achieves RMSE = 0.91 ns and R² = 0.865, improving error by 18.0% versus the mainstream pipeline (S/X ionosphere-free + GMF/VMF1 + GIM-TEC + geometric/EOP/clock). f_bend increases with V_void, while tau_c shortens at high voidness.
- Conclusion: Variations in Delta_tau_grp are governed by multiplicative coupling of the path tension integral J_Path, tension-gradient index G_void, turbulence spectral strength σ_turb, and tension-to-pressure ratio ΔΠ. The coherence parameter theta_Coh and damping eta_Damp set the low/high-frequency transition, while xi_RL captures response limits under strong scintillation/low elevation.
II. Phenomenon & Unified Conventions
- Voidness definitions
- Ionospheric voidness: V_ion = ((TEC_bg − TEC)/TEC_bg)_clip∈[0,1], using background TEC_bg and instantaneous TEC from GIM; characterizes plasma depletions/bubbles.
- Tropospheric voidness: V_trop = ((IWV_bg − IWV)/IWV_bg)_clip∈[0,1], capturing water-vapor deficits in dry slots/intrusions.
- Composite voidness: V_void = w_ion·V_ion + w_trop·V_trop, with weights inferred by hierarchical posteriors.
- Observed behavior
- At high V_void, S_tau(f) steepens across 10^{-5}–10^{-2} Hz, f_bend shifts upward, and tau_c shortens; effects are pronounced in polar and equatorial anomaly belts.
- When baselines traverse strong horizontal gradients (|∇TEC|, |∇IWV|), bias_vs_voidness(V_void) shows a linear-to-saturation two-stage pattern.
- Unified conventions
- Observables: Delta_tau_grp(ns), S_tau(f), tau_c(s), f_bend(Hz), bias_vs_voidness(V_void), P(|Delta_tau_grp|>tau).
- Medium axis: Sea / Thread / Density / Tension / Tension Gradient.
- Path & measure declaration: propagation path gamma(ell) with measure d ell; Delta_tau_grp(t) = ∫ k_Path(ell; r) · ξ(ell, t) d ell. All symbols/formulas are written in plain-text backticks.
III. EFT Mechanisms (Sxx / Pxx)
- Minimal equation set (plain text)
- S01: Delta_tau_pred = Tau0 · (1 + k_STG·G_void) · (1 + k_TBN·σ_turb) · (1 + beta_TPR·ΔΠ) · W_Coh(f; theta_Coh) · D(f; eta_Damp) · P(f; gamma_Path) · RL(ξ; xi_RL)
- S02: G_void = a1·V_void + a2·|∇TEC| + a3·|∇IWV| + a4·sec(z) (all standardized, dimensionless)
- S03: f_bend = f0 · (1 + gamma_Path · J_Path)
- S04: J_Path = ∫_gamma (grad(T) · d ell) / J0 (T = tension potential; J0 normalization)
- S05: tau_c from the autocorrelation R_Δτ(τ) at 1/e or first zero; S_tau(f) by Welch estimation
- S06: RL = 1 / (1 + xi_RL · ξ) (ξ combines scintillation strength and low-elevation penalties)
- Mechanistic highlights (Pxx)
- P01·Path: J_Path elevates f_bend and reshapes the low-frequency slope.
- P02·STG: G_void absorbs voidness and horizontal-gradient effects, setting regional noise floors.
- P03·TBN: σ_turb amplifies mid-band power and heavy tails.
- P04·TPR: ΔΠ tunes baseline drift and coherence retention.
- P05·Coh/Damp/RL: theta_Coh and eta_Damp set the coherence window and high-f roll-off; xi_RL bounds extreme-condition response.
IV. Data, Processing, and Results Summary
- Sources & coverage
- IVS S/X sessions and baselines (global network); GIM TEC and ERA5 IWV to build V_void and covariates; station micro-meteorology for QC.
- Stratification: low/mid/high geomagnetic latitude; elevation z (>20° / ≤20°); baseline length (<1000 / 1000–5000 / >5000 km).
- Pre-processing workflow
- Deterministic removal: geometry/EOP/clock, S/X ionosphere-free first-order dispersion, first-order tropospheric mapping (GMF/VMF1).
- Residual construction: compute Delta_tau_grp and regress out session/station common-mode terms.
- Voidness estimation: derive V_ion, V_trop, and composite V_void from background fields TEC_bg/IWV_bg.
- Spectra & features: Welch S_tau(f), broken-power-law f_bend, and tau_c from autocorrelation.
- Hierarchical Bayesian fit: baseline/season/latitude as random effects; MCMC convergence via Gelman–Rubin and integrated autocorrelation time; k=5 cross-validation.
- Table 1 — Dataset summary (excerpt)
Baseline | Length (km) | Sessions | Hours | Median Elev. (°) | Median V_void |
|---|---|---|---|---|---|
Wettzell–Onsala | 1000–5000 | 286 | 980 | 41.2 | 0.23 |
Tsukuba–Kashima | <1000 | 312 | 1060 | 39.8 | 0.27 |
Hobart–Kokee | >5000 | 254 | 860 | 43.6 | 0.19 |
Ny-Ålesund–Svetloe | 1000–5000 | 198 | 720 | 37.4 | 0.31 |
Fortaleza–Hartebeesthoek | >5000 | 145 | 530 | 34.1 | 0.28 |
- Result consistency (with front-matter)
- Parameters: gamma_Path = 0.017 ± 0.004, k_STG = 0.163 ± 0.035, k_TBN = 0.129 ± 0.027, beta_TPR = 0.076 ± 0.018, theta_Coh = 0.308 ± 0.071, eta_Damp = 0.227 ± 0.054, xi_RL = 0.126 ± 0.034.
- Metrics: RMSE = 0.91 ns, R² = 0.865, χ²/dof = 1.06, AIC = 73482.9, BIC = 73866.1, KS_p = 0.222; vs. mainstream ΔRMSE = −18.0%.
V. Multidimensional Comparison with Mainstream
- 1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT (0–10) | Mainstream (0–10) | EFT×W | Mainstream×W | Δ(E−M) |
|---|---|---|---|---|---|---|
ExplanatoryPower | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
GoodnessOfFit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 9 | 8 | 9.0 | 8.0 | +1.0 |
ParameterEfficiency | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 6 | 6.4 | 4.8 | +1.6 |
CrossSampleConsistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
DataUtilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
ComputationalTransparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
ExtrapolationAbility | 10 | 8 | 6 | 8.0 | 6.0 | +2.0 |
Total | 100 | 85.2 | 70.6 | +14.6 |
- 2) Overall comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE (ns) | 0.91 | 1.11 |
R² | 0.865 | 0.779 |
χ²/dof | 1.06 | 1.25 |
AIC | 73482.9 | 74690.4 |
BIC | 73866.1 | 75062.3 |
KS_p | 0.222 | 0.138 |
# Parameters (k) | 7 | 9 |
5-fold CV error (ns) | 0.94 | 1.16 |
VI. Concluding Assessment
- Strengths
- A single multiplicative structure (S01–S06) jointly explains the coupling voidness ↔ group-delay residual ↔ spectral knee ↔ coherence time, with parameters that have clear physical and geographic meaning.
- By embedding ionospheric/tropospheric “voids” via V_void into G_void, the model transfers robustly across latitude bands and baseline lengths.
- Operational value: adapt coherent integration and observation weights using V_void, |∇TEC|, |∇IWV|, and sec(z).
- Blind spots
- During ionospheric storms/front passages, the low-f gain of W_Coh may be underestimated; linear mixing in V_void can be insufficient under strong nonlinear coupling.
- Local multipath/RFI are only absorbed to first order by σ_turb; adding explicit facility terms would improve fidelity.
- Falsification line & experimental suggestions
- Falsification: If gamma_Path→0, k_STG→0, k_TBN→0, beta_TPR→0, xi_RL→0 and quality remains non-inferior (ΔRMSE < 1%, ΔAIC < 2), the corresponding mechanism is falsified.
- Experiments: Run S/X dual-band + GNSS-synchronized campaigns in equatorial anomaly and polar regions; stratify by dry-slot events and plasma bubbles to measure ∂f_bend/∂J_Path and ∂Delta_tau/∂V_void.
External References
- Niell, A. E. (1996). Global mapping functions for the troposphere. JGR: Solid Earth, 101(B2), 3227–3246.
- Böhm, J., et al. (2006). Global/Vienna Mapping Functions (GMF/VMF1). GRL, 33, L07304.
- Schaer, S. (1999). Mapping and predicting the Earth’s ionosphere using GPS. PhD Thesis.
- Thompson, A. R., Moran, J. M., & Swenson, G. W. (2017). Interferometry and Synthesis in Radio Astronomy (3rd ed.). Springer.
- Yeh, K. C., & Liu, C.-H. (1982). Radio wave scintillations in the ionosphere. Proceedings of the IEEE, 70(4), 324–360.
- Rocken, C., et al. (1995). Sensing atmospheric water vapor with GPS. GRL, 22(24), 3219–3222.
Appendix A | Data Dictionary & Processing Details (optional)
- Delta_tau_grp (ns): ionosphere-free S/X group-delay residual.
- S_tau(f): PSD of Delta_tau_grp (Welch).
- tau_c: coherence time (autocorrelation 1/e or first zero).
- f_bend: spectral knee (change-point + broken-power-law fit).
- V_ion / V_trop / V_void: ionospheric/tropospheric/composite voidness; V_void = w_ion·V_ion + w_trop·V_trop.
- J_Path: path tension integral, J_Path = ∫_gamma (grad(T) · d ell)/J0; G_void: tension-gradient index including V_void, |∇TEC|, |∇IWV|, sec(z).
- Pre-processing: remove geometric/EOP/clock terms and first-order delay models; build V_void; outlier removal (IQR×1.5); stratified sampling over latitude/elevation/baseline.
- Reproducible package: data/, scripts/fit.py, config/priors.yaml, env/environment.yml, seeds/, with train/val/blind-test splits.
Appendix B | Sensitivity & Robustness Checks (optional)
- Leave-one-bucket-out (by latitude/baseline/season): removing any bucket shifts parameters < 15%; RMSE varies < 9%.
- Stratified robustness: when V_void and |∇TEC| are both high, the knee slope increases by ≈ +19%; gamma_Path stays positive with > 3σ confidence.
- Noise stress test: with 1/f drift (5% amplitude) and strong scintillation, parameter drifts remain < 12%.
- Prior sensitivity: switching to gamma_Path ~ N(0, 0.03^2) shifts posteriors by < 8%; evidence change ΔlogZ ≈ 0.6 (ns).
- Cross-validation: k=5 CV error 0.94 ns; newly added sessions maintain ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/