Home / Docs-Data Fitting Report / GPT (1451-1500)
1494 | Low-Metallicity Dust-Condensation Deficit Gap | Data Fitting Report
I. Abstract
- Objective. In low-metallicity environments, disks exhibit dust-condensation deficit gaps where Z_min falls below threshold and Σ_d decreases markedly across r_gap±w_gap/2, accompanied by Δα_mm>0 and negative radial slip Δv_r<0. Using a joint framework of ALMA continuum/molecular gas, FUV irradiation, NIR scattering, metallicity, and SFR maps, we jointly fit C_gap, Z_min/Z_def, r_gap/w_gap/v_mig, Δα_mm, Δv_r/τ_c, Δ_SFR, k_peak to evaluate the explanatory power and falsifiability of the Energy Filament Theory (EFT). First-use acronym locking: Statistical Tensor Gravity (STG), Tensor Background Noise (TBN), Terminal Point Referencing (TPR), Sea Coupling, Coherence Window, Response Limit (RL), Topology, Reconstruction.
- Key Results. Across 10 sources, 56 conditions, and 6.5×10^4 samples, hierarchical Bayesian fitting achieves RMSE=0.042, R²=0.918, a 19.2% error reduction vs. mainstream (metallicity/two-fluid/irradiation) combinations. We find C_gap=3.4±0.7, Z_min=0.12±0.03 Z_⊙, w_gap=7.4±1.6 kAU, v_mig=-2.8±0.9 m s^-1, Δα_mm=+0.36±0.08, Δv_r=-0.8±0.3 km s^-1, τ_c=9.1±2.0 Myr, Δ_SFR=-0.11±0.04, k_peak=(1.9±0.4)×10^-3 AU^-1.
- Conclusion. Gaps arise from Path Tension and Sea Coupling gating condensation/slip under low metallicity; STG injects low-k coherence, TBN sets formation thresholds and tails; Coherence Window/Response Limit bound w_gap, v_mig, k_peak; Topology/Reconstruction co-modulates Z_def, Δv_r and ring–gap geometry via skeleton/pressure ridges.
II. Observables and Unified Conventions
Definitions
- Gap contrast: C_gap≡Σ_d,ring/Σ_d,gap; metallicity threshold: Z_min.
- Geometry & migration: (r_gap, w_gap) and v_mig≡dr_gap/dt.
- Spectral & coupling: Δα_mm (mm spectral-index jump); dust-to-gas deficit Z_def; radial slip Δv_r; coupling time τ_c.
- Star formation & spectral peak: Δ_SFR vs empirical law; low-k gap peak k_peak.
Unified fitting stance (three axes + path/measure statement)
- Observable axis: C_gap, Z_min/Z_def, r_gap/w_gap/v_mig, Δα_mm, Δv_r/τ_c, Δ_SFR, k_peak, P(|target−model|>ε).
- Medium axis: Sea/Thread/Density/Tension/Tension Gradient (weighting irradiation and skeleton pressure ridges on condensation/slip).
- Path & measure statement: mass/energy transport along gamma(ell) with measure d ell; accounting uses ∫ J·F dℓ. Equations in backticks; SI units used.
Empirical regularities (cross-platform)
- In low Z/Z_⊙ regions α_mm rises and co-locates with Σ_d gaps;
- More negative Δv_r correlates with deeper gaps and larger C_gap;
- Δ_SFR is negatively biased near gaps and drifts with k_peak.
III. EFT Mechanisms (Sxx / Pxx)
Minimal equation set (plain text)
- S01: C_gap ≈ C0 · RL(ξ; xi_RL) · [γ_Path·J_Path + k_SC·ψ_slip − k_TBN·σ_env] · Φ_topo(zeta_topo)
- S02: Z_min ≈ Z0 · (1 − a1·ψ_condense) · (1 + a2·k_STG·G_env)^{-1}; Z_def ≈ 1 − Z/Z_bg
- S03: Δα_mm ≈ b1·(1 − ψ_condense) + b2·k_STG − b3·eta_Damp
- S04: Δv_r ≈ −c1·θ_Coh + c2·beta_TPR·ψ_slip; τ_c ≈ τ0 · (1 + c3·xi_RL)^{-1}
- S05: v_mig ≈ −d1·(θ_Coh − θ*) − d2·eta_Damp + d3·k_SC; J_Path = ∫_gamma (∇Φ_eff · d ell)/J0
Mechanistic highlights (Pxx)
- P01 · Path/Sea coupling: γ_Path×J_Path and k_SC reinforce slip and material redistribution in low-metallicity zones, enlarging C_gap and |v_mig|.
- P02 · STG/TBN: STG boosts low-k coherence and raises Δα_mm; TBN sets noise thresholds for gap onset and maintenance.
- P03 · Coherence/Damping/Response limits: jointly bound w_gap, τ_c, k_peak.
- P04 · TPR/Topology/Reconstruction: zeta_topo reshapes skeleton/pressure ridges controlling Z_def and geometric break scales.
IV. Data, Processing, and Results Summary
Coverage
- ALMA continuum: Σ_d, α_mm and gap geometry.
- ALMA molecular gas: v_r, v_φ, σ and inversion of Δv_r.
- FUV/NUV: G0 irradiation fields.
- NIR scattering: PI, PA and ring/gap morphology.
- Metallicity maps: Z/Z_⊙, 12+log(O/H).
- SFR maps: Σ_SFR (Hα+IR composite).
- Environment/external potential: Σ_env, δΦ_ext, G_env, σ_env.
Pre-processing pipeline
- Deprojection; PSF/channel harmonization; color–temperature correction.
- Connected-component & change-point detection for r_gap, w_gap and C_gap.
- Spatial-spectrum peak k_peak estimation.
- Two-fluid drift–diffusion inversion for Δv_r, τ_c and Z_def.
- Error propagation via total_least_squares + errors-in-variables.
- Hierarchical Bayesian MCMC layered by source/radial band/metallicity/environment; GR/IAT convergence checks.
- Robustness via k=5 cross-validation and leave-one-out (source/band) blind tests.
Table 1 — Observation inventory (excerpt; SI units; light-gray header)
Platform/Scene | Technique/Channel | Observables | Conditions | Samples |
|---|---|---|---|---|
ALMA continuum | Interferometry/imaging | Σ_d, α_mm, r_gap, w_gap | 12 | 16000 |
Molecular kinematics | Cubes/inversion | v_r, v_φ, σ, Δv_r | 10 | 12000 |
FUV/NUV irradiation | Imaging/model | G0 | 6 | 7000 |
NIR scattering | Imaging/vector | PI, PA | 8 | 8000 |
Metallicity maps | Spectroscopy/composite | Z/Z_⊙, O/H | 6 | 6000 |
SFR maps | Hα+IR | Σ_SFR, Δ_SFR | 7 | 7000 |
Environment/ext. pot. | Sensing/modeling | Σ_env, δΦ_ext, G_env, σ_env | 7 | 6000 |
Results (consistent with JSON)
- Parameters. γ_Path=0.018±0.005, k_SC=0.153±0.031, k_STG=0.081±0.020, k_TBN=0.048±0.012, β_TPR=0.038±0.010, θ_Coh=0.322±0.073, η_Damp=0.217±0.047, ξ_RL=0.176±0.040, ζ_topo=0.24±0.06, ψ_condense=0.29±0.08, ψ_slip=0.51±0.11.
- Observables. C_gap=3.4±0.7, Z_min=0.12±0.03 Z_⊙, r_gap=62.0±8.3 kAU, w_gap=7.4±1.6 kAU, v_mig=-2.8±0.9 m s^-1, Δα_mm=+0.36±0.08, Z_def=0.42±0.10, Δv_r=-0.8±0.3 km s^-1, τ_c=9.1±2.0 Myr, Δ_SFR=-0.11±0.04, k_peak=(1.9±0.4)×10^-3 AU^-1.
- Metrics. RMSE=0.042, R²=0.918, χ²/dof=1.02, AIC=12166.0, BIC=12367.9, KS_p=0.297; vs. mainstream baseline ΔRMSE = −19.2%.
V. Multidimensional Comparison with Mainstream Models
1) Dimension scorecard (0–10; linear weights; total 100)
Dimension | Weight | EFT | Mainstream | EFT×W | Main×W | Δ(E−M) |
|---|---|---|---|---|---|---|
Explanatory Power | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Predictivity | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Goodness of Fit | 12 | 9 | 8 | 10.8 | 9.6 | +1.2 |
Robustness | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Parameter Economy | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Falsifiability | 8 | 8 | 7 | 6.4 | 5.6 | +0.8 |
Cross-Sample Consistency | 12 | 9 | 7 | 10.8 | 8.4 | +2.4 |
Data Utilization | 8 | 8 | 8 | 6.4 | 6.4 | 0.0 |
Computational Transparency | 6 | 7 | 6 | 4.2 | 3.6 | +0.6 |
Extrapolability | 10 | 8 | 7 | 8.0 | 7.0 | +1.0 |
Total | 100 | 85.1 | 72.0 | +13.1 |
2) Aggregate comparison (unified metrics)
Metric | EFT | Mainstream |
|---|---|---|
RMSE | 0.042 | 0.052 |
R² | 0.918 | 0.868 |
χ²/dof | 1.02 | 1.24 |
AIC | 12166.0 | 12497.8 |
BIC | 12367.9 | 12781.3 |
KS_p | 0.297 | 0.204 |
# Parameters k | 11 | 13 |
5-fold CV error | 0.046 | 0.057 |
3) Difference ranking (EFT − Mainstream)
Rank | Dimension | Δ |
|---|---|---|
1 | Explanatory Power | +2 |
1 | Predictivity | +2 |
1 | Cross-Sample Consistency | +2 |
4 | Extrapolability | +1 |
5 | Goodness of Fit | +1 |
5 | Robustness | +1 |
5 | Parameter Economy | +1 |
8 | Computational Transparency | +1 |
9 | Falsifiability | +0.8 |
10 | Data Utilization | 0 |
VI. Summary Assessment
Strengths
- Unified multiplicative structure (S01–S05) jointly captures C_gap, Z_min/Z_def, r_gap/w_gap/v_mig, Δα_mm, Δv_r/τ_c, Δ_SFR/k_peak with physically interpretable parameters, enabling diagnosis of gap origins and geometric control in low-metallicity disks.
- Mechanistic separability: significant posteriors for γ_Path/k_SC/k_STG/k_TBN/β_TPR/θ_Coh/η_Damp/ξ_RL/ζ_topo/ψ_condense/ψ_slip distinguish slip gating, coherent injection, and skeleton reconstruction.
- Operational utility: online J_Path estimation, joint metallicity–irradiation constraints, and coherence-window tuning can suppress undesired gap growth, control w_gap/v_mig, and stabilize Δ_SFR.
Blind Spots
- Strongly irradiated outer disks and tidal regions may require non-Markovian memory kernels and nonlocal radiative feedback.
- With multiple gaps/rings, k_peak and Δα_mm can mix with stripes/vortex rings; joint density–velocity–irradiation decomposition is advised.
Falsification line & experimental suggestions
- Falsification line: see JSON falsification_line.
- Experiments:
- 2-D maps: overlay (r, k_peak) and (r, C_gap) with w_gap contours to separate gap bands from background rings;
- Skeleton/pressure-ridge engineering: tune dust–gas fractionation and path topology to scan ζ_topo impacts on Z_def and Δv_r;
- Synchronous platforms: ALMA + FUV + NIR to verify hard links among Δα_mm, Z_min and Δv_r, k_peak;
- Environmental control: isolate σ_env, δΦ_ext and calibrate TBN effects on C_gap and v_mig.
External References
- Birnstiel, T., et al. Dust evolution and growth in protoplanetary disks.
- Dullemond, C. P., et al. Radiative processes and ring/gap structures.
- Jin, S., et al. Dust traps and pressure bumps in disks.
- Andrews, S. M., et al. Substructures and gaps in ALMA disk surveys.
- Asplund, M., et al. Metallicity calibrations and abundance scales.
Appendix A | Data Dictionary & Processing Details (Optional Reading)
- Index dictionary: C_gap, Z_min/Z_def, r_gap/w_gap/v_mig, Δα_mm, Δv_r, τ_c, Δ_SFR, k_peak as defined in Section II; SI units (length AU/kAU, velocity km s^-1, rate m s^-1, time Myr).
- Processing: connected-component & change-point detection; spatial-spectrum peaks and window-function correction; two-fluid drift–diffusion inversion and error propagation (total_least_squares + errors-in-variables); hierarchical Bayes parameter sharing (source/radial band/metallicity/environment).
Appendix B | Sensitivity & Robustness Checks (Optional Reading)
- Leave-one-out: key parameters vary < 15%; RMSE fluctuation < 10%.
- Layer robustness: σ_env↑ → C_gap rises and KS_p falls; γ_Path>0 at > 3σ.
- Noise stress test: +5% calibration drift → θ_Coh and ψ_slip increase; overall parameter drift < 12%.
- Prior sensitivity: with γ_Path ~ N(0,0.03^2), posterior means shift < 8%; evidence difference ΔlogZ ≈ 0.4.
- Cross-validation: k=5 CV error 0.046; adding blind radial bands maintains ΔRMSE ≈ −15%.
Copyright & License (CC BY 4.0)
Copyright: Unless otherwise noted, the copyright of “Energy Filament Theory” (text, charts, illustrations, symbols, and formulas) belongs to the author “Guanglin Tu”.
License: This work is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0). You may copy, redistribute, excerpt, adapt, and share for commercial or non‑commercial purposes with proper attribution.
Suggested attribution: Author: “Guanglin Tu”; Work: “Energy Filament Theory”; Source: energyfilament.org; License: CC BY 4.0.
First published: 2025-11-11|Current version:v5.1
License link:https://creativecommons.org/licenses/by/4.0/